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Abstract—Maintaining the roadway infrastructure is one of
the essential factors in enabling a safe, economic, and sustainable
transportation system. Manual roadway damage data collection is
laborious and unsafe for humans to perform. This area is poised
to benefit f rom t he r apid a dvance a nd d iffusion o f a rtificial in-
telligence technologies. Specifically, d eep 1 earning advancements
enable the detection of road damages automatically from the
collected road images. This work proposes to collect and label
road damage data using Google Street View and use YOLOvV7
(You Only Look Once version 7) together with coordinate
attention and related accuracy fine-tuning t echniques s uch as
label smoothing and ensemble method to train deep learning
models for automatic road damage detection and classification.
The proposed approaches are applied to the Crowdsensing-based
Road Damage Detection Challenge (CRDDC2022), IEEE BigData
2022. The results show that the data collection from Google Street
View is efficient, and the proposed deep learning approach results
in F1 scores of 81.7% on the road damage data collected from
the United States using Google Street View and 74.1% on all
test images of this dataset. With these results, we received rank
2 (silver prize) as a data contributor and rank 3 (bronze prize)
as the predictive model in this competition among 54 leaders
(private companies and academic institutions) in this area.

Index Terms—road damage, detection, classification, YOLOvV7,
coordinate attention

I. INTRODUCTION

The roadway network is the backbone of the economy.
Economic development largely depends on the efficiency,
reliability, and safety of highways and transportation systems,
which support mobility needs, commerce, and industry. But
the roadways face challenges from population growth, deteri-
orating infrastructure, and rapidly rising roadway construction
costs. Maintaining the state’s economic momentum requires
significant i mprovements in transportation infrastructure.

Roadway damages cost U.S. drivers billions of dollars an-
nually. Even worse, they impact the middle- and lower-income
individuals more and disproportionately. For instance, pothole
damage alone costs U.S. drivers $3 billion annually [1].
Roadway management often needs to collect condition data
annually for both pavements and bridges. This data set is
critical to maintenance planning efforts and required by other
federal reporting needs. The collection of this data set has
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recently slowed due to budgetary constraints leading to low
accuracy and consistency [2].

Therefore, the approach in this proposed work allows us
to perform roadway damage data collection efficiently. The
proposed approach is expected to provide more data at a lower
cost, higher frequency, and better accuracy compared to the
manual, unsafe approach. Faster data collection means better
responses to roadway issues, reducing maintenance and other
economic and opportunity costs, and enhancing citizen safety.

Additionally, recent advancements in the deep learning area
are poised to benefit this area. Therefore, this work explores
YOLOV7 and related techniques, such as coordinate attentions
and label smoothing, to tackle road damage detection and
classification tasks. This work then also apply the selected ap-
proaches to the Crowdsensing-based Road Damage Detection
Challenge (CRDDC2022), A Track in the IEEE Big Data 2022
Big Data Cup Challenge dataset ( [3]). Thus, our contributions
are:

« Proposing an approach to efficiently collect and label road
damages and contributing a road damage dataset to the
Crowdsensing-based Road Damage Detection Challenge
(CRDDC2022).

o Exploring current state-of-the-art object detection meth-
ods and related techniques to road damage detection and
classification tasks.

o Experimenting with these approaches using CRDDC2022
dataset.

II. RELATED WORK

Deep learning methods are gaining traction thanks to their
state-of-the-art results in various domains such as computer
visions [4], soil science [5], [6], graph adversarial attacks in
social network analysis [7], or even solar flare predictions [8],
naming but a few. The transportation industry is no exception,
and the roadway damage identification task is poised to
benefit from the rapid advance and diffusion of deep learning
technologies. The common deep learning methods in this area
include Faster Region-Based Convolutional Neural Networks
(Faster R-CNN) [9], You Only Look Once (YOLO) [10], and
Single Shot Detection (SSD) [11].

Specific to road damage detection, Arya et al. [12], [13]
reported a set of state-of-the-art solutions in global roadway
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damage detection and classification tasks. For instance, Pham
et al. [14] experimented with Detectron2’s implementation of
Faster R-CNN implementation in this study. Similarly, Hegde
et al. [15] experimented with YOLO and ensemble approaches
on this task. Generally, these reviewed studies show that the
Faster R-CNN model provides better accuracy with the trade-
off of prediction time (= 8 frames per second) than the YOLO
model (= 40 frames per second). Conversely, SSD is the
balance between the two regarding prediction accuracy and
prediction time [14].

This field is developing rapidly, and there more experiments
should be conducted to find a better approach in this specific
case. Specifically, among these techniques, YOLO seems to
attract more research work because there are more recent
releases of this technology. By the time of writing, YOLOvV7
was the current YOLO version, and this is what was experi-
mented with extensively in this work. YOLOV7 is the official
implementation of a paper [16] from Wang et al.

YOLOV7 outperforms popular object detectors, by the time
of writing, in speed and accuracy in the range from five
FPS (frames per second) to 160 FPS [16]. It also provides
a set of freebies ready to be used and easily finetunes
detection models. Furthermore, it is relatively easy to add
components/modules to YOLOvV7 and create new models using
its configuration file. Therefore, this project tested various
hyperparameters (using the freebies) and models (by adding
custom modules and configuration files) to train models for
road damage detection and classification tasks.

\\\

Fig. 1. Typical examples of road images collected using cameras placed on
car dashboards. These images have typical perspectives. Road damages are
more at the lower half of the images, and road damages may look different
when they are at different positions on the images.

YOLOvV7 back-end networks often make good use of chan-
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nel attention to weight channels differently while combin-
ing channels at different layers. However, channel attention
squeezes the whole spatial space of one channel into one
value. Thus, it does not capture spatial information. The spatial
information is important in road damage detection tasks.
Specifically, Figure 1 shows a typical example of road images
collected using a camera (e.g., smartphone camera) placed on
a car dashboard (which is a typical road image data collection
method) from the RDD2022 (road damage dataset 2022) [3].
Observably, most of the road damages are in the lower half
of the pictures, and damages at different locations may have
different looks due to camera perspectives. Therefore, this
work experiments with Coordinate Attention [17].

The coordinate attention technique adds spatial (coordinate)
information into channel attention. Specifically, this technique
uses two feature encoding vectors with features aggregated
from the width and height of the image/layer features. There-
fore, spatial information can be incorporated into the network
for prediction and classification purposes. Additionally, the
Coordinate Attention module is built in a modularized way
that supports incorporating itself into YOLOv7 models easily
via inserting simple codes and changing configuration files.

III. DATA COLLECTION AND BENCHMARK DATASETS

Recent developments in smartphones, dashcams, and drones
enable automated roadway damage data collection. The smart-
phone and dashcam approach is easier to set up and implement
and more efficient than the manual approach to scanning and
finding roadway damages. However, it still demands human
drivers to drive through the roads and record videos. Con-
versely, we can utilize drones to reduce the human workload.

Labeling road damage data manually on the collected im-
ages to create training datasets would be laborious. Therefore,
we approach existing datasets as benchmarks for training deep
learning models to automatically detect road damage from the
collected videos. There are some datasets available. However,
the one provided in the IEEE 2020 Big Data Challenge Cup
by Sekilab! is considered practical [18], [19].

This benchmark dataset consists of one training set (train)
and two test sets (fest/ and fest2). The training set contains
21,041 images (2,829, 7,706, and 10,506 for Czech, India, and
Japan, respectively). The two test sets contain 2,631 and 2,664
images, correspondingly. The training set has 34,702 ground-
truth labels (bounding boxes and damage types). There are four
damage types considered: longitudinal cracks (D00), traverse
cracks (D10), alligator cracks (D20), and potholes (D40).
Specifically, Figure 2 shows the damage type distributions (of
the four corresponding damage types) over the three countries.

Our experiments with this benchmark dataset showed that
models trained on the dataset of one country do not work
well in other countries because they have different road types.
Therefore, if we trained deep learning models on this dataset,
it would not scale well to the roads in the US. Consequently,
we collected a separate dataset for the USA. Specifically, we

Thttps://rdd2020.sekilab.global/
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Fig. 2. Distribution of damage types in the current benchmark dataset. D00,
D10, D20, and D40 are longitudinal cracks, traverse cracks, alligator cracks,
and potholes, respectively.

utilized Google Street View API?> to download images from
Google Street View.

Google Street View is an excellent resource with a vast
number of images of roads all over the world. We focused
only on states in the US in this current project. However, we
can theoretically go to any city in the world that Google Street
View supports to collect data on road damage. Furthermore,
Google also updates its images pretty frequently. Specifically,
most of the collected images in this dataset were captured in
2020 or later. Also, the highest downloadable image resolution
is 640 by 640, which is suitable for training deep learning
models.
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Fig. 3. Distribution of damage types in the newly collected set of images
from the United States using Google Street View. There are four types of
damages considered: longitudinal (D00), traverse (D10), alligator (D20), and
pothole (D40) damages, respectively.

In this project, we collected 6,005 images from Google
Street View. As shown in Figure 3, there are 8,303; 4,121;

Zhttps://developers.google.com/maps/documentation/streetview/overview
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1,068; and 175 damages for longitudinal (DO00), traverse
(D10), alligator (D20), and pothole (D40) damages, corre-
spondingly. With this dataset, we were awarded the silver prize
for data contributor in the Crowdsensing-based Road Damage
Detection Challenge (CRDDC2022), IEEE BigData 20223,

In this same competition, other institutions/organizations
also contributed their images. These are valuable sources for
increasing labeled images for training deep learning models.
Therefore, this project utilizes this as a benchmark dataset to
explore road damage detection and classification tasks using
YOLOV7. Specifically, this dataset is available online [3].
Table I shows the corresponding numbers of images for
training and testing in this dataset.

TABLE I
THE NUMBERS OF (ROUGHLY) TRAIN AND TEST IMAGES FROM SIX
DIFFERENT COUNTRIES IN THE CROWDSENSING-BASED ROAD DAMAGE
DETECTION CHALLENGE (CRDDC2022).

Country Train images | Test images
India 9,000 1,000
Japan 10,000 1,000
Czech Republic 2,000 1,000
Norway 9,000 1,000
United States® 5,000 1,000
China 3,500 1,000

2This is our contribution.

IV. DATA PROCESSING
A. Image sizes

After training an initial model, it turned out that the predic-
tion and classification accuracy were low. One of the reasons is
that we need to reduce the training image size to 640 x 640 (the
standard training image size for YOLOvV7) for all countries
because of the limitation of our device’s GPUs. Therefore, we
would like to have a deeper look at image sizes from countries
and how they are related to prediction accuracy. As shown in
Table II, it turns out that Japan and Norway have different
image sizes within themselves. This might not be a problem for
YOLOV7 because YOLOvV7 automatically transforms images
and corresponding labels into standard sizes before training.
However, it might be a problem for those who would like to
convert the YOLOv7 annotation format (ratio-based, floating
numbers from 0 to 1) to absolute pixel locations if assuming
the same image size for all images. Notably, United_State is
the only folder that has YOLOV7 standard training image size.

Our initially trained models also indicate that the prediction
and classification accuracy for the Norway folder is relatively
low compared to data from other folders. The starting point
of our investigation into this is the image sizes. A deeper
investigation into Norway’s set of images indicates several
reasons for this low accuracy. These reasons include having
different image sizes, too large images, and many images in
this folder do not have labels (thus do not help training). One
may claim that images without crack labels may help to train

3https://crddc2022.sekilab.global/
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TABLE II
IMAGE SIZES FOR DIFFERENT IMAGE FOLDERS IN THE
CROWDSENSING-BASED ROAD DAMAGE DETECTION CHALLENGE

(CRDDC2022).
Folder Image width(s) Image height(s)
China_Drone 512 512
China_MotorBike 512 512
Czech 600 600
India 720 720
Japan 600, 1024, 1080, 540 | 600, 1024, 1080, 540
Norway 4040, 3650, 3643 2041, 2035, 2044
United_States® 640 640

#YOLOV7 standard training image sizes.

negative cases. However, we argue object detection models are
trained by anchors (not whole images). Therefore, there are a
massive number of negative patches in the images with labels
already. Therefore, object detection models do not use images
without labels for training. In other words, images without
labels are not usable for training object popular detection
models such as YOLOvV7 or Faster R-CNN.

As discussed, having different image sizes may not be a
problem; however, having too large images is. Two main issues
include RAM consumption and label resizing. Specifically,
large RAM consumption impacts training and inference time
(our current standard 16GB GPU RAM is not able to perform
training on the image sizes from Norway folder). Thus, these
images are scaled to standard image sizes (640 x 640) before
training. Additionally, there are also many small labels in
these large images. Thus, scaling to smaller image sizes makes
several road damage labels become too small (even smaller
than 1 pixel in the scaled size). Road damage annotation with
too small (or invalid) sizes reduces the models’ performances.

Fig. 4. A typical image from the Norway folder (Norway_000003.jpg). It has
a large image size and seems to be a patch of two images (tiling from left to
right). Most of the road section (and damages) are at the lower-left corner of
the image (the 1824 x 1824 pixels surrounded by the red rectangle).

A further look at the pictures in Norway folder reveals some
interesting details. Some pictures seem to be patches of two
images together (one on the left and another one on the right).
As shown in Figure 4 for Norway_000003.jpg in this folder,
most pictures have the roads located at the lower-left corner.
Therefore, we decided to crop these pictures and take only
1824 x 1824 pixels at the lower-left corner of every picture
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from the Norway folder. The reason for selecting 1824 pixels
is because it is about half of the width of the original picture
where most of the road is located, and YOLOV7 requires a
training image of size as multiple of 32. Additionally, we
also crop or remove the annotations for damages outside
of this region. The number of cropped/removed images is
insignificant (537 out of 10,692 road damages), meaning
that the selected region is appropriate. Lastly, we name the
resulting folder as Norwayl in this dataset.

B. Annotation cleaning and train/validation division

In the data folders of this dataset, there are images that
do not have annotations (e.g., many of them in the Norway
folder) and images that have annotations that are not one of the
four types considered in this project (D00, D10, D20, D40).
Figure 5 depicts the number of images in the folders with
a test set and the corresponding number of images usable
for training (those that do not have annotations cannot be
utilized for training). Observably, Japan, Norway, and India are
the top three with the high number of images, while Japan,
United_States, and India are the top three with the highest
number of usable images.
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Fig. 5. Distribution of numbers of images and images usable for training
(images with damage annotations) in the six folders (folders that have test
data).

Out of the seven data folders, China_Drone does not have
a test set. Therefore, we only create models for those that
have a test dataset. Figure 6 depicts the strategy used to split
images into the training set (train) and validation set (val)
used in this project. Specifically, China_Drone does not have
a test set; thus, its images are all placed into the training set.
For each of the other folders, images are divided into 90%
and 10%. When training models for one folder, 10% of that
folder is placed into the validation set, and all other images
are placed into the training set.

For instance, as shown in Figure 6, for the United_States
case, we place 10% of its images into the validation set. Then
we place the rest 90% of its images together with images
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from all other countries (including China_Drone) into the
training set. The reason for this is that we need to use genuine
United_States data in the validation set to select the best model
for United_States. However, the training set can include a mix-
up of data from different sources to increase the amount of
training data besides augmentation. Similarly, we perform the
same splitting strategy for other folders.

Japan

Norwayl

United_States

China_MotorBike

China_Drone

Fig. 6. Data division strategy. For instance, the best models for United_States
are selected by 10% of its images (as validation set), and all other images
are placed into the training set (red dashed box indicates the train data for
training models for United_States).

V. EXPERIMENTS

A. Evaluation Metrics

Different experiments result in different models. Thus, we
need to have a robust metric to select the best models out
of all experiments. There are two common evaluation metrics
used in this area. The first one is the Average Precision (mAP)
calculated at IoU (Intersection over Overlapping) threshold of
0.5 (mAP@0.5). The second one is the F1 score.

The mAP is a good measurement when we need to ensure
the model is stable across different confidence thresholds (ro-
bust) while the F1 score is computed for a specific confidence
threshold. The common practice is to use mAP@0.5 on the
validation set to select the best model and use the F1 score to
report the model performance on the test dataset. This project
also follows this common practice (using mAP@0.5 to select
the best models and report F1 scores on the test sets).

B. Train image augmentations

Image augmentation is a great technique to improve model
robustness and accuracy. YOLOvV7 uses the default image
augmentations as listed in Table III. However, Figure 7
indicates that there are several obvious issues with these
default parameters. Specifically, the scale parameter is too
large, which makes some pictures become too small (thus,
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TABLE III
YOLOV7* DEFAULT IMAGE AUGMENTATION PARAMETERS.
Parameter | Value | Descriptions
hsv_h 0.015 | HSV-Hue augmentation (fraction)
hsv_s 0.7 | HSV-Saturation augmentation (fraction)
hsv_v 0.4 | HSV-Value augmentation (fraction)
degrees 0.0 | rotation (+/- deg)
translate 0.2 | translation (+/- fraction)
scale 0.9 | scale (+/- gain)
shear 0.0 | shear (+/- deg)
perspective 0.0 | perspective (+/- fraction)
flipud 0.0 | flip up-down (probability)
fliplr 0.5 | flip left-right (probability)
mosaic 1.0 | mosaic (probability)
mixup 0.15 | mixup (probability)
copy_paste 0.0 | copy paste (probability)
paste_in 0.15 | copy paste (probability)
loss_ota 1 | use ComputeLossOTA

Fig. 7. Examples of augmented images using YOLOv7’s default parameters.

the damages). The mosaic, mixup, and paste_in options are
high, making the augmented images unrealistic.

Table IV shows the final list of image augmentation pa-
rameters used in this project (other default parameters remain
the same). Specifically, scale, mosaic, mixup, and paste_in
are slightly reduced to avoid unwanted, unrealistic effects.
Additionally, as discussed previously, road damages collected
using cameras placed on car dashboards have some perspec-
tive. Thus, we utilized shear (0.01) and perspective (0.0001)
in the image augmentation parameters. Figure 8 shows an
example of images in a training epoch generated with this
set of hyperparameters. Observably, these augmented images
are more realistic than those in Figure 7.
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TABLE IV
EXPERIMENTED IMAGE AUGMENTATION PARAMETERS (OTHER
PARAMETERS REMAIN THE SAME).

Parameter Value | Descriptions

scale 0.7 | scale (+/- gain)

shear 0.01 | shear (+/- deg)
perspective | 0.0001 | perspective (+/- fraction)
mosaic 0.5 | mosaic (probability)
mixup 0.1 | mixup (probability)
paste_in 0.05 | copy paste (probability)

BlChina_Drone_000004.jpg [China_Drone_000008.jpg
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Fig. 8. Examples of augmented images using proposed augmentations.

C. Coordinate Attentions

Given an input X with height H, width W, and C channels,
Coordinate Attention [17] uses two pooling kernels of size
(H, 1) and (1, W) to extract features from spatial directions
accordingly. Specifically, the output of a channel c at width w
and height h can be computed using the following equations:

1 w-—-1
sz =w xe(hy 1) (D
1=0
1 H-1
=g > weljw) @
7=0

where z.(z,y) is the value of channel ¢ at location (z,y).

f=6(F1([z", ") 3)

where [z, 2] is the concatenation of two computed spatial
features (a pair of two 1D vectors of sizes W and H for each
channel) to make C one 1D vector of size W+ H. Additionally,
F1 is a convolutional transformation with a kernel size of 1x 1
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and C/r number of filters (r is called the reduction ratio).
Finally, ¢ is a nonlinear activation function. Consequently, the
resulting feature is of size C/r x (W + H).

The resulting feature f is then split into two separate parts
(according to W and H) to get f" of size C'/r x H and f* of
size C/r x W. These produced features are then transformed
by two transformation functions (F, and F}). They are two
different convolutional layers with 1 x 1 kernel size and the
number of filters as C' (same size as the input channels). These
transformations generate two feature vectors:

9" = o (Fu(f") )

9" = U(Fw(fw))

where o is the sigmoid function that helps to convert the values
into the range of 0 to 1 (as the weights), the output Y then
can be computed as:

(&)

ye(i J) = ze(i, ) X g¢ (i) x g (5) ©)
Notably, Y has the same shape as the input X, but it is now
weighted to incorporate spatial coordinates.

The selected YOLOv7 model for this project has 50 layers
in the backbone. We first trained models with this default
configuration for each of the data folders. Next, we added
three coordinate attentions to the layers right before sending to
the three last RepConv (Represented Convolution [20]) layers.
These layers are selected because their outputs are fed directly
to the last detect layer (IDetect).

These three additional Coordinate Attention layers signif-
icantly increase the model performance without noticeable
inference time changes. Therefore, we decided to add three
other coordinate attention layers to the backbone network.
They are placed after layers 24, 37, and 50 correspondingly.
These layers are selected because their outputs are what
passed from YOLOvV7’s backbone to YOLOV7’s head (thus,
we applied coordinate attention to these outputs before passing
them to the head). These other three additional coordinate
attentions also improve the accuracy significantly.

D. Label smoothing

For various reasons, the annotated labels are not 100%
accurate. For instance, many traverse cracks with different
perspectives or a slight camera rotation may be mislabeled
as longitudinal cracks and vice versa. Additionally, alliga-
tor cracks are often confused with longitudinal and traverse
cracks. Therefore, label smoothing [21] technique helps im-
prove performance in this case. Precisely, classification loss
from classification heads (classifying road damages into one
of the four considering crack types) is calculated using cross-
entropy using the following formula:

c
loss = Z(—yc log(9c) — (1 — ye) log(1 — yc))

c=1

N
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where C is the number of classes, . is the predicted proba-
bility of class label c and y. is calculated as:

1 if the item is of class c

0 otherwise
This way of setting the value for y. is called hard label
(100% sure that the label is of class ¢). However, label
smoothing allows having a smoothing constant e that softens
this confidence:

1 — e+ ¢/C if the item is of class ¢
¢/C otherwise

Ye = ©))
The common value for € is 0.1, which is what we experimented
with in this project. Notably, the values of all y. over all
classes still add up to one (ZCC Ye = 1).

E. Additional accuracy fine-tuning techniques

We build three models for each dataset folder with a test
set. One model is the default YOLOvV7 configuration with
the modified image augmentation options, one model is the
configuration with three additional coordinate attention layers
in YOLOvV7’s head, and one model is the configuration similar
to the second one and three more Coordinate Attention layers
in the YOLOvV7’s backbone. We use the ensemble method to
combine the results from the three best models for each folder
and improve the accuracy. Furthermore, Japan and India have
similar sets of images. Therefore, we use the ensemble of
the best models of both countries to perform inference on the
test sets of these two countries. Additionally, we also applied
test time augmentation techniques (using —augment option in
YOLOVvV7’s inference command).

These fine-tuning techniques improve prediction accuracy
with a slight trade-off of the inference time compared to the
standard YOLOV7 inference time. However, this trade-off is
insignificant because standard YOLOv7 with standard config-
uration (used in this project) is reasonably fast (= 40 114
frames per second). These techniques are highly recommended
and help boost prediction accuracy if time requirements are
insignificant.

VI. RESULTS AND DISCUSSIONS

The mAP@0.5 measurements are used to select the best
models at the training time based on the validation data.
However, the models’ performances on the test sets are evalu-
ated using the F1 score from the organizer. The prediction
results on the test sets produced by experimented models
and their ensembles are uploaded to the dataset’s publisher.
They divide the evaluation submissions into five leaderboards.
One board per folder for India, Japan, Norway, United States,
and one folder for the test images from all six countries
called “Overall” (including also Czech and China_Drone). The
average of all six boards is used to rank submissions to these
leader boards.

Table V summarizes the F1 scores on these boards for our
proposed models. Notably, Japan and United States boards
have the highest accuracy because they have the most usable
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TABLE V
F1 SCORES ON THE LEADER BOARDS OF THE CROWDSENSING-BASED
ROAD DAMAGE DETECTION CHALLENGE (CRDDC2022)

United States
0.817

Overall
0.741

India
0.516

Norway
0.504

Average
0.663

Japan
0.735

training images (as in Figure 5). The United States has a
little higher accuracy compared to Japan, probably because
there are more longitudinal damages in this folder (as shown
in Figures 3 and 2. The longitudinal is considered easier to
classify. Similarly, India and Norway have similar F1 scores,
and they are lower because they have lower and similar
numbers of usable images. Figure 9 shows examples of the
damages detected by our proposed models for the test images
in the six test sets. Lastly, the average accuracy of all boards
of 0.663 ranked our approach the 3" place among 54 teams
that participated in the Crowdsensing-based Road Damage
Detection Challenge (CRDDC2022), IEEE BigData 2022 Cup.

China_MotorBike_002212.jpg

India_005049.jpg Japan_001224.jpg

9

Norway_009475.jpg

Fig. 9. Examples of damage detection using the proposed approach.
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The prediction and classification accuracies can be improved
in several ways. First, collecting road data from Google
Street View using our proposed approach is relatively easy.
We will collect and label more data to train more robust
models. Additionally, if the computation power (e.g., GPUs)
is available, we would like to try other YOLOV7 configu-
rations® (YOLOv7-X, YOLOv7-W6, YOLOv7-E6, YOLOV7-
D6, YOLOvV7-E6E). These models were proved to have better
accuracy on the MS COCO (Microsoft Common Objects in
Context) dataset, but we could not experiment with them
due to computation limitations. Furthermore, if the inference
time is not a strong requirement, many more models can be
built to create an ensemble with higher accuracy. Finally, the
experiments’ source codes, data files, and configuration files
are available on this project’s GitHub page: https://github.com/
mdptlab/roaddamagedetector2022.

VII. CONCLUSION

This work proposes to use Google Street View to collect
and label road damages. This data collection approach is
efficient because Google Street View has a huge amount
of images of roads all over the world. These images are
also frequently updated, which helps to get the latest road
conditions. Additionally, this work explores different state-
of-the-art object detection methods and their applicability for
road damage detection and classification tasks. We experiment
with YOLOv7 with different configurations, incorporating
coordinate attentions and label smoothing techniques. We also
utilized fine-tuning techniques such as image augmentations
and an ensemble method to improve accuracy.

These proposed approaches are applied to the dataset from
the Crowdsensing-based Road Damage Detection Challenge
(CRDDC2022), IEEE BigData 2022, and yield state-of-the-art
results on the test images. Specifically, the proposed approach
has the F1 scores of 81.7% on the road damage data collected
from the United States using Google Street View and 74.1%
on all test images of this dataset. These proposed approaches
received rank 2 (silver prize) as a data contributor and rank
3 (bronze prize) as the predictive model for this competition
among 54 leaders (private companies and academic institu-
tions) in this area. In the future, we suggest using Google
Street View and collecting more road damage data to train
more robust models with higher accuracy. Additionally, if
computation resources allow, we would like to explore more
complicated (heavier) YOLOvV7 backbone networks available
on YOLOv7’s GitHub page. These models were proved to
have higher accuracy on MS COCO (Microsoft Common

Objects in Context) dataset.
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