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Abstract—Fingerprint verification is widely used to verify
individuals based on their unique fingerprint patterns. However,
existing fingerprint identification systems encounter challenges
while dealing with poor-quality images, smudged or marked
fingerprints, and variations in finger positioning. These issues are
common for latent fingerprints. This work proposes to address
these issues through a novel machine-learning model employing
advanced image enhancement techniques. The model aims to
enhance fingerprint image quality and minimize the impact of
damage using machine learning, ultimately reducing the error
rate in identification systems. Specifically, this work proposes to
incorporate deep learning image enhancement techniques into the
low-quality and latent fingerprints before passing them through
another deep learning model to perform verification tasks. This
work also provides insights as different experiments are made
while applying different approaches to different real-life datasets.

Index Terms—super-resolution convolutional neural networks,
minutiae extraction, fingerprint verification

I. INTRODUCTION

Biometric authentication, which is used for automated per-
sonal identification, has gained significant interest in recent
years. It involves using unique physical or behavioral char-
acteristics like fingerprints, faces, retinas, and palm prints to
identify individuals. Among these, fingerprint recognition is
the most widely used and successful method, finding applica-
tions in various fields [1].

Fingerprint identification systems are crucial in law en-
forcement, access control, and personal authentication. They
rely on a technique called feature-based image matching.
Fingerprint identification systems compare the details of fin-
gerprint features between two fingerprint images to determine
if they match. However, existing systems face challenges in
accurately recognizing fingerprints due to factors such as
low-quality images, finger marks, or rotational differences.
These challenges are common for latent fingerprints due to the
intrinsic latent fingerprint collection process. These challenges
result in a high error rate and incorrect identification of users’
fingerprints, posing a security risk.

This work aims to address image quality issues and
damages in fingerprint images using deep learning models
such as Super-Resolution Convolutional Neural Network (SR-
CNN) [2], Very Deep Super Resolution (VDSR) [3], and Super
Resolution Generative Adversarial Networks (SRGAN) [4]

models. We focus on enhancing the image quality and min-
imizing damage effects before feeding the images into the
verification systems. Specifically, this work utilizes a Siamese
model, and Scale-Invariant Feature Transform (SIFT) [5] key
points matching model for the fingerprint verification tasks.

Siamese is a popular deep-learning model for image clas-
sification, and SIFT is a computer vision technique that
identifies unique points or features in an image. These features
are resilient to changes in scale, rotation, and other trans-
formations. Image enhancement becomes crucial, especially
with low-resolution images, as lower image quality leads to
fewer detected key points, resulting in fewer matches. This
is even more critical for low-quality and latent fingerprint
images because the fingerprint key points are critical for the
verification task. Therefore, besides the popular and common
Siamese model, this work also tests the efficiency of image
enhancement models using SIFT for latent fingerprints.

Additionally, this proposed approach is also applied to real-
life fingerprint datasets called the SOCOFing [6] dataset,
the NIST special fingerprint dataset 300a [7], and the FVC
dataset [8]. This is a critical step in the development process,
ensuring that the proposed models are robust, reliable, and
applicable in practical scenarios beyond the controlled envi-
ronment of training data.

II. RELATED WORK

Computer vision deep learning models for modern vision
tasks [9] are pervasive and might even be more accurate
than human vision while dealing with low-quality and latent
images [10], [11]. The fingerprint verification domain is no ex-
ception. Fingerprint enhancement techniques have been widely
utilized in fingerprint-based authentication systems to improve
the clarity of ridge and valley structures in input fingerprint
images. Hong et al. [12] introduced an adaptive enhancement
method that enhances the ridge and valley structures based
on estimated local ridge orientation and frequency. Yang et
al. [13] addressed limitations in traditional Gabor filter-based
enhancement by proposing a modified Gabor filter.

Recent advancements in Convolutional Neural Networks
(CNNs) have also been applied to fingerprint enhancement.
Cao et al. [14] proposed a CNN-based method for orientation
field calculation, while Jian et al. [15] presented a deep CNN-
based enhancement scheme using multitask learning. Super-
resolution (SR) techniques have also been explored, such as
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the ridge orientation-based coupled dictionaries by Singh et
al. [16] and the sparse representation with ridge pattern prior
by Bian et al. [17]. Zhu et al. [18] proposed FingerGan model
was to enhance the quality of latent fingerprints. Additionally,
Joshi et al. [19] proposed FDeblur-GAN, which deblurs low-
quality images while still preserving fingerprint information.

Likewise, extensive research has been conducted on finger-
print image comparison employing deep learning computer
vision models, which have also been employed in finger-
print comparison tasks. Werner et al. [20] improved the
efficiency of a comparison algorithm using a neural network.
Jea and Govindaraju [21] utilized a neural network to com-
pare minutiae from partially overlapping fingerprints. These
studies highlight the effectiveness of neural networks in fin-
gerprint comparison tasks. Additionally, Li et al. [22] proposed
Siamese Network with Convolutional Neural Network (CNN)
and Multi-Scale Dilated Convolutions as an efficient method
for fingerprint recognition, yielding promising results in mea-
suring fingerprint similarity and verifying whether fingerprints
belong to the same person. Similarly, the SIFT technology
has also been investigated for matching fingerprint features.
For instance, Bakheet et al. [23] proposed a robust minutia
extraction and matching approach using SIFT features.

In contrast to previous approaches that relied on traditional
approaches, where original images were considered ground
truth values and image resolution deliberately reduced to sim-
ulate low-resolution images, our experiments took a different
route. This work utilizes modified versions of images from
the SOCOFing dataset, intentionally damaged with same res-
olution as original unaltered image, as low-resolution images.
This is to simulate the real-world latent fingerprints collected
from crime scenes, often of very low quality due to the
intrinsic fingerprint collection process. Simultaneously, unal-
tered SOCOFing images are used to serve as high-resolution
reference images. Additionally, this work pre-processed NIST
sd300 roll images to resemble the SOCOFing dataset, provid-
ing a validation of image enhancement on real-time data with
human errors like marks, inks, and letters.

Additionally, instead of directly comparing images using
the SIFT algorithm, this work first enhances the image quality
using a deep-learning model tailored for image enhancement.
Following this enhancement, the comparison of key points in
the images exhibited a noticeable improvement in keypoint
detection and matching, particularly for low-quality images.
This innovative approach resulted in improved accuracy in
fingerprint matching using the Siamese model and SIFT key
points matching.

III. DATASETS AND PRE-PROCESSING

Datasets are important to test and validate to ensure that
the proposed models are robust, reliable, and applicable in
practical scenarios beyond the controlled environment of
training data. This work utilizes three datasets, including the
SOCOFing [6] dataset, the NIST special fingerprint dataset
300a [7], and the FVC dataset [8]. Specifically, various pre-

processing steps are applied to these datasets to create five
distinct datasets.

A. Dataset 1

The SOCOFing Dataset (Dataset 1) is divided into two
main folders: ”real” and ”altered.” The ”real” folder contains
original images, while the ”altered” folder contains images
with alterations at three levels: easy, medium, and hard. These
alterations come in three damage types: Z-cut (Zcut), circular
rotations (CR), and obliterations (Obl) and three damage
levels: easy, medium, and hard.

Fig. 1. Example of a real image (left) versus one of its damaged versions
(right) in SOCOFing dataset. These can then be used as high-resolution and
low-resolution inputs for the image enhancement models.

Figure 1 shows an instance of a real image and one
of its damaged versions. Image enhancement models work
on datasets with high-resolution and low-resolution images.
Therefore, the “real” images are considered high-resolution
images, and the “altered” images are low-resolution images.
Since each real image is associated with nine different types
of altered images, this work generates the same number of
pairs (9) binding each real image with its altered versions.
Specifically, these versions were named based on the original
real image name from the original dataset, followed by the
damage type (CR, Zcut, Obl) and the damage level (easy,
medium, hard).

B. Dataset 2

Dataset 2 combines the NIST and FVC datasets. Further-
more, following the conventional approaches of generating
high-resolution and low-resolution in the image enhancement
community, this work considers the original images in these
two datasets as the high-resolution one and resize the image
(using conventional image processing method such as image
interpolation) to 20% of its original size and then re-scale
back. This resize and re-scale operation reduces the quality
of the original image. This helps simulate the low-resolution
fingerprints. Figure 2 shows an example of the original image
from this dataset and its corresponding down-graded version
using the conventional image resizing method. Observably, the
image on the right is blurred compared to the original one on
the left.
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Fig. 2. Example of a real image (left) versus one of its down-graded version
(right) in Dataset 2 dataset. These can then be used as high-resolution and
low-resolution inputs for the image enhancement models.

C. Dataset 3

The SOCOFing dataset is divided into two parts for training
and testing a Siamese model, and the resulting dataset is
named Dataset 3. Out of the 6,000 images in the real image
folder, the first 5,000 images and their corresponding altered
variations were used for training. The remaining 1,000 images
were reserved for testing.

D. Dataset 4

This dataset (Dataset 4) aims to explore image super-
resolution on a more realistic dataset. SOCOFing images are
small and of standard size (103 × 96) but high resolution
(96 × 96). They lack any other human errors such as letters,
ink marks, or any other human errors. On the other hand,
fingerprint databases and the latent fingerprints collected from
crime scenes may vary in size and resolution and may contain
things like ink marks or handwritten notes.

Therefore, this work proceeds with the NIST Sd300a dataset,
which contains both roll and plain images, providing a more
real-time scenario with various human errors like ink marks,
letters, dust, etc. Notably, these images have various sizes and
resolutions, representing the actual fingerprint databases in real
life well. The next step is to produce the corresponding low-
resolution fingerprints that can represent the low-quality and
damaged latent fingerprints collected from crime scenes.

Figure 3 outlines the steps to produce the latent fingerprints.
They include the following steps: (i) select 1000 roll images
from the roll and plain images, (ii) resize all images to
a uniform size of 512 × 512, (iii) randomly apply 2 to 3
alterations (damages) to the images generated in the previous
step, and (iv) reduce the size of the images to 256 × 256.
Finally, images resulting from Step (i) are used as high-
resolution images, and those from Step (ii) are used as their
low-resolution counterparts.

Fig. 3. Steps to generate low-resolution images that can simulate the latent
fingerprints collected from crime-scene (right-most) from an original image
(left-most).

High Resolution Image Low Resolution Image

Fig. 4. An example of a high-resolution image (left) versus its low-resolution
image (right) in Dataset 4.

Figure 4 shows an example of a pair of images for high-
resolution (left) and low-resolution (right) input pair from
Dataset 4. Notably, besides being low resolution, the image
on the right also has several random areas being damaged.
This is to simulate the common issues that happen to latent
fingerprints due to their intrinsic collection process from crime
scenes.

E. Dataset 5

Several ridge lines in fingerprints are thin, and due to the
pixelated effects of the degrading process, some lines even
change their patterns and become different lines, leading to
wrong enhancement. Therefore, we attempt to create thicker
ridge lines using image binary thresholding [8]. In other words,
the darker grey parts next to a ridge line are combined with
the ridge line to form a thicker line, and the rest becomes the
background (white).

Thresholding is a key aspect of image processing as it facili-
tates the segmentation and extraction of vital information from
an image. By segmenting an image into distinct regions based
on pixel intensity or value, thresholding aids in distinguishing
objects or features of interest from the background. While
there are various thresholding techniques like Global, Adaptive
Mean, and Adaptive Gaussian, the adaptive Gaussian method
tends to yield superior results by reducing noise, as shown in
Figure 5.

Notably, Adaptive Gaussian Thresholding produces more
reasonable results. Therefore, we utilize this approach for this
dataset. Specifically, this dataset is generated following steps
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original image
(with thin lines)

global thresholding
(v=127)

adaptive mean
thresholding

adaptive Gaussian
thresholding

Fig. 5. The original image (top-left) and their corresponding outputs from
different thresholding techniques.

specified for generating Dataset 4. The only difference is the
application of Adaptive Gaussian Thresholding after Step (iii),
followed by reducing images to low resolution. The instance
of Dataset 5 is shown in Figure 6.

High Resolution Image Low Resolution Image

Fig. 6. An example of a high-resolution fingerprint (left) versus its low-
resolution counterpart in Dataset 5.

IV. MODEL TRAINING

A. Fingerprint classification model

The primary purpose of this model is to measure the
similarity between two fingerprint images. This work aims
to determine whether enhancing fingerprints can decrease
the distance between pairs of fingerprints that match while
increasing the distance between pairs of fingerprints that do not

match. Therefore, a Siamese Model1. Specifically, this model
is trained on the Dataset 3 after splitting the 6,000 real images
into 5,000 and 1,000 for training and validating accordingly.
The validating set is used to select the best model trained on
the training set.

B. Fingerprint enhancement models

1) Super-Resolution Convolutional Neural Network: Super-
Resolution Convolutional Neural Network (SRCNN) model is
designed to enhance image resolution and consists of three
sequential convolutional layers (l1, l2, and l3) with specific
filter counts and kernel sizes. A custom mean squared error
(MSE) loss function for image comparison is used and the
model uses the Adam optimizer with a learning rate of 0.001
and tracks performance metrics like PSNR (peak signal-to-
noise ratio) and SSIM (structural similarity index). This model
is essential for image enhancement and super-resolution appli-
cations. Figure 7 shows the architecture of SRCNN trained.

Fig. 7. Architecture of the trained Super-Resolution Convolutional Neural
Network.

2) Very Deep Super-Resolution: A Very Deep Super-
Resolution (VDSR) model specializes in enhancing image
resolution, making it a vital component in a wide range of
image processing applications. The model architecture begins
with an input layer capable of handling images of various sizes
and three-color channels. It proceeds to employ a sequence of
convolutional layers, including an initial convolutional layer

1https://github.com/Abuzariii/Fingerprint-Matching-with-Siamese-Netwo
rks-Tensorflow.git
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followed by 18 intermediate layers, each equipped with 64
filters and ReLU activation for feature extraction.

Significantly, the model incorporates a final convolutional
layer with a single filter, creating a high-resolution image.
However, the distinguishing feature of VDSR is its ‘residual
learning’ mechanism. Rather than directly producing the en-
hanced image, it computes the difference between the high-
resolution image and the input low-resolution image. This dif-
ference is then added back to the original image, emphasizing
the model’s focus on improving image quality.

3) Super-Resolution Generative Adversarial Network: This
work also trained a Super-Resolution Generative Adversarial
Network (SRGAN)2. The model in the article is designed
so that the predicted image is four times the size of the
low-resolution image. To align with this structure, the low
resolution should be 1/16th of the high resolution (1/4th for
with and height respectively).

Dataset 5 is used to train this model, which has high-
resolution images at 512×512 and low-resolution at 256×256,
the low-resolution images were initially half of the high res-
olution. To fit the existing model structure, we further reduce
the low-resolution image resolution to 128×128, maintaining
the 4×-upscaling factor for width and height respectively.

Actual Image Predicted Image

Fig. 8. An example of the actual image (left) and its predicted image
from low-quality image (right) using Super-Resolution Generative Adversarial
Network.

Additionally, SRGAN is more deeper than SRCNN, and
training with image pairs at 512/128 resolutions requires
higher GPU RAM. Therefore, due to GPU limitation, we
adjusted the model structure, setting the upscaling factor to
2 instead of 4, and used 256× 256 images as high resolution
and 128× 128 as low resolution. The factor of 2 is to avoid a
very low-quality image (1/4th of 256 is 64), where fingerprint
features would be excessively blurred. Figure 8 illustrates
the outcomes of the SRGAN model predictions. Observably,
SRGAN model can reconstruct the original fingerprint from
the degraded one well.

2https://www.analyticsvidhya.com/blog/2023/06/srgans-bridging-the-gap-b
etween-low-res-and-high-res-images/

V. EXPERIMENTS

A. Experiment 1: SRCNN and Dataset 2

The trained SRCNN model is applied to Dataset 2, training
it on 9,000 fingerprint images and achieving a PSNR of 36
decibels. Subsequently, this SRCNN model is used to improve
input images before feeding to the trained Siamese model,
which had been trained on Dataset 3. The diagram in Figure 9
provides an overview of this experiment.

high-resolution (256x256)

SRCNN
Models

low-resolution (25%)

Trained 
Models

Pretrained 
Siamese

predicted image

score1

score2original (random size)

Fig. 9. Overview of Experiment 1. Solid arrows indicate training time
(executed on the training set), and dashed arrows indicate inference time
(executed on the test set). The difference between scores 1 and 2 shows the
effect of image-enhancement models.

To have a deeper analysis, this work also conducts tests on
402 positive anchor pairs (matching pairs) and 402 negative
anchor pairs (non-matching pairs). The aim is to investigate if
SRCNN-based image enhancement could enhance the Siamese
matching capability. For this, both the images in matching and
non-matching pairs were initially enhanced using SRCNN and
then fed into the Siamese model.

B. Experiment 2, 3, 4, and 5: VDSR/SRCNN and Dataset 1

Experiment 1 has a simple way of degrading the image
quality by using image resizing. This is somehow simple
and not realistic. In reality, latent fingerprints are damaged
in different ways. Therefore, these experiments (Experiments
2, 3, and 4) attempt to analyze how image enhancement can
improve prediction accuracy for the latent fingerprints that
are partially damaged. Original SOCOFing has these damaged
fingerprints (this explains why we name this dataset as Dataset
1). Figure 10 depicts an overview of this experiment.

In Experiment 2, the model is trained on 5,000 images
of Dataset 1. We then assessed the trained model by testing
the model on 402 positive anchor pairs (matching pairs) and
402 negative anchor pairs (non-matching pairs) to determine
if SRCNN-based image enhancement could enhance Siamese
matching.

The initial dataset of 5,000 images is relatively small,
and we would like to evaluate the impacts of the training
dataset size. Therefore, Experiment 3 expands it to 15,000
pairs of images. This experiment also assesses the model using
different SOCOFing alteration types, like Obl, Zcut, and CR.

Experiment 4 is similar to Experiment 2. However, instead
of training the SRCNN model, we would like to analyze the
impact of VDSR model instead (to compare the performance
between these two architectures). Likewise, Experiment 5 is
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similar to Experiment 2 except that it utilizes SIFT as an
evaluation metric instead of Siamese scores.

SOCOFing
real image

VDSR 
SRCNN
Models

SOCOFing
altered image

Trained 
Models

Pretrained 
SiameseSOCOFing

enhanced image

score2

score1

Some alteration of 
type CR/Obl/Zcut

SOCOFing
enhanced image

Fig. 10. Overview of Experiment 2. Solid arrows indicate training time
(executed on the training set), and dashed arrows indicate inference time
(executed on the test set). The difference between scores 1 and 2 shows the
effect of image-enhancement models.

C. Experiments 6 and 7: SRCNN/SRGAN with Dataset 4

The purpose of these experiments is to evaluate the impacts
of image super-resolution regarding fingerprint verification
tasks utilizing more realistic datasets (Dataset 4) with different
image sizes and resolutions (high and low) as described
previously. For SRCNN training, dataset 4 is divided into 800
images for training, 100 for validation, and 100 for testing.
After training the model, SIFT key-point matching is used
to compare fingerprints. The comparison focused on three
categories for positive and negative anchor pairs:

1) Comparison 1 (High & low resolution): High-resolution
image (512 × 512) paired with a low-resolution image
(256× 256) from Dataset 4.

2) Comparison 2 (High & resized low resolution): High-
resolution image (512×12) paired with a low-resolution
image (256× 256) resized to 512× 512.

3) Comparison 3 (High & enhanced resolution): High-
resolution image (512 × 512) paired with a 512 × 512
size image predicted by SRCNN.

Experiment 7 is similar to that of Experiment 6. However,
instead of SRCNN, we train SRGAN instead. Additionally,
due to GPU limitation and SRGAN’s complexity, we use
256 × 256 and 128 × 128 for the high and low image sizes,
respectively.

D. Experiment 8: SRCNN with Dataset 5

Due to the thin fingerprint line pattern, the image degra-
dation and enhancement may produce wrong line patterns.
Therefore, Experiment 8 experiments with the pre-processing
steps to generate thicker ridge lines before degradation and
enhancement (as described in the generation of Dataset 5).
Due to the limitation of GPUs, we only experiment with the
SRCNN model using Dataset 5. Specifically, this dataset is
divided into 800 training images, 100 validation images, and
100 test images for training, model selection, and testing,
respectively.

VI. EVALUATION METRICS

The evaluation of the results of the first four experiments
is based on the following criteria: (1) For matching pairs
(positive anchor): If the enhanced images yield a reduced
distance between matching pairs, it is considered successful
and failed otherwise. (2) For non-matching pairs (negative
anchor): If the enhancement results in an increased distance,
it is regarded as successful and is failed otherwise.

VII. RESULTS

A. Experiment 1: SRCNN and Dataset 2

The purpose of Experiment 1 is to evaluate the image
enhancement applied to SOCOFing images. Unfortunately,
this step reduces the accuracy of verification tasks, as shown in
Figure 11. The outcomes of the Siamese matching are as fol-
lows: 48% the enhancement helps improve the results (increase
similarity distance for negative pairs and reduce similarity
distance for the positive pairs). In simpler terms, this means
that after image enhancement, the Siamese model produced
better results in 48% of cases but provided unsatisfactory
results in the remaining 52%.

actual image predicted image

Fig. 11. Actual image (left) versus predicted image (right) using SRCNN
model trained on Dataset 2.

The poor results may happen because the model was trained
on a different dataset containing NIST and FVC images and
then tested on SOCOFing images. The NIST/FVC dataset has
images with higher resolution and less ink intensity, whereas
SOCOFing images are lower in resolution and have more ink
intensity. As a result, the model might not be able to work well
with the lower-quality SOCOFing images because it didn’t
learn the characteristics of low-resolution, high-ink-intensity
images during its training.

B. Experiment 2: SRCNN trained on Dataset 1

SRCNN model trained on 5,000 images of Dataset 1 im-
proves image quality, as shown in Figure 12. The outcomes of
the Siamese matching indicate the improvements in the image
enhancement process to the accuracy of fingerprint verification
tasks.

Specifically, Table I shows the percentages of the cases in
which the trained SRCNN model can help with fingerprint
verification tasks. Notably, the enhancement helps significantly
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actual image predicted image

Fig. 12. Actual image (left) versus predicted image (right) using SRCNN
model trained on Dataset 1.

in the case of Z-cut damages to the fingerprints (81.41%)
and does not help much with obliterations (63.6%). This is
explainable since SRCNN can only enhance the resolution and
cannot re-generate the damages made by obliterations.

Alternation Type Improvement
CR (circular rotations) 75.00%
Obl (obliterations) 63.60%
Zcut (Z-Cuts) 81.41%

TABLE I
PERCENTAGE OF THE CASES THE SRCNN MODEL CAN HELP IMPROVE

FINGERPRINT VERIFICATION TASKS.

C. Experiment 3: SRCNN trained on extended Dataset 1

Table II shows the results of this experiment. Observably,
increasing training size does not help (and even hurt) the
verification performance. This may be explained that the
SRCNN model is simple and cannot help to accommodate
a huge amount of information from a larger dataset.

Alternation Type Improvement
CR (circular rotations) 69.00%
Obl (obliterations) 50.24%
Zcut (Z-Cuts) 50.24%

TABLE II
PERCENTAGE OF THE CASES THE SRCNN MODEL CAN HELP IMPROVE
FINGERPRINT VERIFICATION TASKS WHEN INCREASING DATA SIZE FOR

TRAINING.

D. Experiment 4: VDSR trained on Dataset 1

The results of Experiment 4 indicate that there wasn’t
a notable improvement in image quality and the repair of
damaged areas, as illustrated in Figure 13. Specifically, this
experiment demonstrates that VDSR didn’t perform well,
achieving only a 52% as improvement cases.

E. Experiment 5: Matching using SIFT

Results of Experiment 5 show that image enhancement
increased the number of key points detected significantly, lead-
ing to more key point matches. For instance, let’s consider one

actual image predicted image

Fig. 13. Actual image (left) versus predicted image (right) using VDSR model
trained on Dataset 1.

of the matching cases from Figure 14: on the original image,
there were only 32 good matches, but after enhancement,
this number jumped to 1,147. Additionally, nearly all the key
points from the image were detected, except for the altered
part.

15 Good Matches 1417 Good Matches

Fig. 14. An example of how the image enhancement process helps increase
the matching key points for a pair of fingerprints. This matching pair only
has 15 pairs of good matching points before enhancement. The same pair has
1,417 matching pairs after enhancement.

This significant increment in the number of matched key
points after the enhancement process demonstrates that image
enhancement can be an effective technique for improving key
point-based image analysis and feature matching, especially
in cases involving low-quality or altered images. More impor-
tantly, most of the fingerprint verification techniques are based
on key-point matching.

F. Experiment 6: SRCNN with Dataset 4

The results from Experiment 6 suggest that SRCNN res-
olution shows promising outcomes in all comparisons, as
illustrated in Figure 15. The first comparison (between the
original image and its low-resolution counterpart) has the least
number of good matching points, the second (between the
original one and its resized version) outperforms the first,
and the final comparison (between the original one and its
enhanced version) produced the highest matching points. This
characteristic holds for all test images, as depicted in Figure
23.

Likewise, when examining negative anchors representing
non-matching images, the number of good matching points
stayed consistently low and aligned across all three compar-
isons, as demonstrated in the right column of Figure 15 as
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Comparison 1: good matches 447

Comparison 2: good matches 1419

Comparison 3: good matches 2664

Matching pairs Non-Matching pairs

Comparison 1: good matches:13

Comparison 2: good matches:21

Comparison 3:good matches:42

Fig. 15. Image enhancement process with SRCNN helps increase matching
key points for matching pairs and still keep that as low for non-matching pairs.
Comparisons 1, 2, and 3 are the comparison between the original file with its
low-resolution, resized resolution, and enhanced resolution, respectively.

Fig. 16. Image enhancement process with SRCNN helps increase matching
key points for all testing matching pairs.

one instance. This characteristic also holds for all other testing
cases for non-matching pairs, as shown in Figure 17.

G. Experiment 7: SRGAN with Dataset 4

The improved predicted image from SRGAN exhibited su-
perior results compared to the first two comparisons. Figure 18
graph further highlights that the first comparison had the
fewest good matching points, the second outperformed the
first, and the final comparison yielded the highest matching
points for all test images.

Fig. 17. Image enhancement process with SRCNN keeps matching key points
relatively and consistently low for non-matching pairs.

Fig. 18. Image enhancement process with SRGAN helps increase matching
key points for all testing matching pairs.

Similarly, when analyzing negative anchors representing
non-matching images, the number of good matching points
remained consistently low and aligned across all three com-
parisons, as demonstrated in Figure 19.

H. Experiment 8: SRCNN with Dataset 5

Additionally, there’s a noteworthy observation about the
SRGAN model. After enhancing the image, it tends to enhance
its appearance. However, if fingerprint ridges are in very
low resolution, during prediction, it might generate clear but
incorrect ridges. As depicted in Figure 20, the low-resolution
image (LR) has a very low resolution, and the predicted
super-resolution image shows clear ridges. However, they are
distinctly different from the original high-resolution (HR)

Authorized licensed use limited to: Sam Houston State University. Downloaded on December 27,2024 at 22:13:26 UTC from IEEE Xplore.  Restrictions apply. 



3253

Fig. 19. Image enhancement process with SRGAN keeps matching key points
relatively and consistently low for non-matching pairs.

image. This impact might be caused by the degradation process
itself.

low resolution super resolution original

Fig. 20. SRGAN may generate wrong pattern if the image is too low quality.

Therefore, this experiment attempts to thicken the ridge
lines before applying degradation process and verification
process as described in Dataset 5. However, our initial ex-
periment shows that this attempt still does not help improve
the verification accuracy.

VIII. DISCUSSIONS

The following observations should be further explored in
the future: (1) applying the approach used in Dataset 1
experiments, where SOCOFing altered images were treated
as low resolution. This methodology can be further explored
with SRGAN, emphasizing a consistent upscaling factor of
1; (2) instead of relying solely on Gaussian blur in Dataset
4, we also explore ‘blind’ image degradation approach; (3)
conducting Experiment 7 using SRGAN could yield improved
results by utilizing high GPU RAM during model training for
processing lower resolution images of superior quality; and
(4) enhanced outcomes may be achieved in Experiment 6 and
7 by training the model with a larger set of images.

IX. CONCLUSION

In conclusion, this project aims to enhance fingerprint
classification accuracy by utilizing machine learning enhance-

ment models, namely SRCNN, VDSR, and SRGAN. De-
parting from the traditional super-resolution approach, this
work experimented with damaged images from the SOCOFing
dataset at the same resolution as low-resolution counterparts.
This novel method significantly improved fingerprint matching
accuracy, especially with SRCNN, achieving a 73% accuracy
rate across all damage types, with an exceptional 81% accu-
racy for Zcut damage.

The extension of this experiment to the NIST roll sd300a
dataset, with preprocessing to simulate real-world conditions,
demonstrated the versatility of the approach. Despite differ-
ences between the datasets, SRCNN and SRGAN yielded
remarkable results, providing enhanced images that, when
matched using SIFT key points, outperformed damaged low-
resolution counterparts. Notably, SRGAN occasionally pro-
duced clear but incorrect ridges when dealing with very low-
resolution images.

These findings emphasize the potential of employing ma-
chine learning enhancement models for fingerprint recognition,
showcasing improved accuracy even in diverse and realistic
datasets. Further exploration and refinement of techniques, es-
pecially addressing occasional inaccuracies like those observed
with SRGAN, will contribute to the ongoing advancement of
fingerprint recognition technology.
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